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On hydrostatic flows in isentropic coordinates
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(Received 16 September 1996 and in revised form 1 September 1999)

The hydrostatic primitive equations of motion which have been used in large-scale
weather prediction and climate modelling over the last few decades are analysed
with variational methods in an isentropic Eulerian framework. The use of material
isentropic coordinates for the Eulerian hydrostatic equations is known to have distinct
conceptual advantages since fluid motion is, under inviscid and statically stable
circumstances, confined to take place on quasi-horizontal isentropic surfaces. First, an
Eulerian isentropic Hamilton’s principle, expressed in terms of fluid parcel variables,
is therefore derived by transformation of a Lagrangian Hamilton’s principle to an
Eulerian one. This Eulerian principle explicitly describes the boundary dynamics of
the time-dependent domain in terms of advection of boundary isentropes sB; these
are the values the isentropes have at their intersection with the (lower) boundary. A
partial Legendre transform for only the interior variables yields an Eulerian ‘action’
principle. Secondly, Noether’s theorem is used to derive energy and potential vorticity
conservation from the Eulerian Hamilton’s principle. Thirdly, these conservation
laws are used to derive a wave-activity invariant which is second-order in terms
of small-amplitude disturbances relative to a resting or moving basic state. Linear
stability criteria are derived but only for resting basic states. In mid-latitudes a time-
scale separation between gravity and vortical modes occurs. Finally, this time-scale
separation suggests that conservative geostrophic and ageostrophic approximations
can be made to the Eulerian action principle for hydrostatic flows. Approximations
to Eulerian variational principles may be more advantageous than approximations
to Lagrangian ones because non-dimensionalization and scaling tend to be based
on Eulerian estimates of the characteristic scales involved. These approximations to
the stratified hydrostatic formulation extend previous approximations to the shallow-
water equations. An explicit variational derivation is given of an isentropic version
of Hoskins & Bretherton’s model for atmospheric fronts.

1. Introduction
My original intention was to analyse atmospheric fronts in an isentropic version of

Hoskins & Bretherton’s (1972) geostrophic momentum model by using conservation
properties. The idea was to consider fronts as local discontinuities where certain
conservation laws were broken and other ones not. It turned out that a variational
formulation, from which conservation laws would arise, had neither been derived
for hydrostatic flows in isentropic coordinates nor for the geostrophic momentum
approximation. In these flows isentropes generally intersect the boundary, and when
the flow is expressed in isentropic coordinates the associated time-dependent boundary
conditions are seldom formulated explicitly. Moreover, variational and Hamiltonian
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formulations of isentropic hydrostatic flows have not been recorded. Roulstone &
Brice (1995) state a variational formulation of quasi-hydrostatic flows but with no
reference to time-dependent boundary conditions nor further analysis of stability
and conservation properties of the hydrostatic system. In this paper, I will therefore
systematically derive isentropic Eulerian variational principles and analyse stability
and conservation properties of the isentropic hydrostatic primitive equations with
explicit inclusion of the time-dependent boundary dynamics. An isentropic version of
Hoskins & Bretherton’s model will finally be derived in the discussion from such an
Eulerian isentropic variational principle.

What are hydrostatically balanced flows? The hydrostatic primitive equations of
motion have been used in large-scale numerical weather prediction and in climate
modelling for the last few decades. While the fully compressible equations of motion
have a vertical momentum equation of the form

Dw

Dt
≡ ∂w

∂t
+ (u · ∇3)w = −1

ρ

∂p

∂z
− g, (1.1)

the hydrostatic equations have one of the form

0 = −1

ρ

∂p

∂z
− g, (1.2)

where vertical coordinate z is part of a local Cartesian coordinate frame with z
normal to the Earth’s surface, w is the vertical velocity, u and ∇3 are the three-
dimensional velocity and gradient vector, respectively, ρ is the density, p the pressure
and g the local gravitational acceleration. Hydrostatically balanced flows are based
on the approximation that horizontal length and velocity scales exceed vertical ones,
with inverse aspect ratio 1/δ. Hydrostatic balance is thus valid to leading order in δ
for large-scale flows in the atmosphere and oceans: these flows are confined to a shell
thin compared with their large horizontal scales.

When and why are isentropic coordinates of interest? Static stability for compress-
ible flows has the form

N2 ≡ g

cp

∂s

∂z
> 0 (1.3)

with N2 the Brunt–Väisälä frequency, cp the specific heat at constant pressure, and s
the entropy. When condition (1.3) holds, we can transform from a Cartesian coordinate
system, x, y, z, to an isentropic one, x, y, s. Since entropy s is materially advected by
the three-dimensional velocity, both in the non-hydrostatic and hydrostatic systems,
fixed boundaries in Cartesian space generally become time-dependent boundaries in
isentropic space. Nevertheless, the hydrostatic dynamics in the interior, away from
boundaries, simplifies in the inviscid and statically stable case to quasi-horizontal
dynamics which takes place on the isentropic coordinate surfaces. Only the horizontal
velocity then enters the equations of motion, while reference to the constrained
vertical velocity vanishes. (Vertical advective velocity w is constrained in the sense
that vertical fluid parcel acceleration Dw/Dt is absent in the vertical hydrostatic
momentum balance.) Friction and forcing are accordingly associated with transport
of momentum and mass across isentropic surfaces. This conceptually simpler picture of
predominantly two-dimensional large-scale atmospheric motion on isentropic surfaces
with weak cross-isentropic flows directly associated with friction and forcing has
been very illuminating in explaining atmospheric circulation patterns (e.g. Hoskins,
McIntyre & Robertson 1985; Hoskins 1991).
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The paper is organized as follows. The variational formulation of hydrostatic
flows is considered as the basic or ‘parent’ dynamics (McIntyre & Roulstone 1996).
Readers who are not familiar with variational and Hamiltonian formulation in fluid
dynamics are referred to review papers by Salmon (1988a), Shepherd (1990), and
Morrison (1998). In § 2, an Eulerian isentropic Hamilton’s principle for hydrostatic
compressible flows is derived by transformation of a Lagrangian Hamilton’s prin-
ciple for hydrostatic compressible flows to an Eulerian one. While in a Lagrangian
Hamilton’s principle the positions of fluid parcels are the dependent variables, in
the Eulerian Hamilton’s principle the fluid parcels are the dependent variables as
function of horizontal spatial coordinates, entropy and time. This Lagrangian Hamil-
ton’s principle for hydrostatic flows follows immediately from Hamilton’s principle
(e.g. Salmon 1988a and Morrison 1998) for non-hydrostatic flows by neglecting the
contribution 1

2
w2 from the kinetic energy. Alternatively, the Lagrangian Hamilton’s

principle for hydrostatic flows can be derived using Dirac’s constrained Hamiltonian
theory (Bokhove 1996, Chap. 5; and Bokhove 1999, § 3.2; see also Theiss 1997). A
partial Legendre transform of the Eulerian Hamilton’s principle for only the interior
variables yields an Eulerian ‘action’ principle. Noether’s theorem is used to derive
energy and potential vorticity conservation laws from the Eulerian Hamilton’s prin-
ciple. These conservation laws are subsequently used in § 3 to derive a wave-activity
invariant which is second order in terms of small-amplitude disturbances relative to a
resting or moving basic state. Linear stability criteria are derived but only for resting
basic states. In mid-latitudes a time-scale separation between gravity and vortical
modes occurs. This separation motivates a discussion in § 4 of derivations of conser-
vative geostrophic and ageostrophic approximations to the Eulerian action principle
for hydrostatic flows. Such derivations of approximate models from the stratified
hydrostatic equations extend previous derivations (e.g. Salmon 1985; Allen & Holm
1996; McIntyre & Roulstone 1996) of approximate conservative models from the
shallow-water equations. Throughout the article, the close correspondence between
shallow-water equations and hydrostatic equations, when the latter are expressed in
isentropic coordinates, is emphasized. The three-dimensional calculations in this pa-
per are greatly simplified when the dynamics is only considered in a two-dimensional
vertical plane. Corresponding two-dimensional calculations may be used as a first
check of the results.

2. Eulerian variational principles in isentropic coordinates
2.1. Eulerian Hamilton’s principle

Consider a Lagrangian variational principle for hydrostatic compressible flows

0 = δSc[ξh] = δ

∫ τ1

τ0

d τ

∫
D

da ρ0(a)

{[
1

2

∂ξh

∂τ
+Rh(ξ1, ξ2)

]
∂ξh

∂τ
−U(s, ρ)−g ξ3

}
, (2.1)

in which fluid parcel positions ξ(a, τ) = (ξ1, ξ2, ξ3)
T are the dependent variables as

functions of a continuum of fluid-parcel labels a = (a, b, c)T and time τ, and in
which h = 1, 2. The Lagrangian density in (2.1) is the kinetic energy, modified by the
Coriolis effect, minus the internal and potential energy. The horizontal components of
the velocity are ∂ξ1,2(a, τ)/∂τ. The Coriolis parameter f (ξ1, ξ2) = ẑ · ∇3 × R with ẑ the
unit vector in the vertical and with R3 = 0. The internal energy U(s, ρ) is a function
of entropy s, which is conserved on a fluid parcel, and density ρ. The reference density
ρ0(a) may be chosen such that ρ(a, τ = 0) ≡ ρ0(a). An element of mass dm is thus
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defined by

dm = ρ0(a) da = ρ(ξ, t) dξ (2.2)

with time denoted by t in an Eulerian framework. The first step in a variation of
internal energy U is obtained from the first law of thermodynamics

dU = T ds− p d
(
1/ρ
)
, (2.3)

with T the temperature and p the pressure. Pressure p is via an equation of state

p = p(s, ρ) (2.4)

related to entropy and density. Hamilton’s principle (2.1) follows immediately from
Hamilton’s principle for non-hydrostatic flows (e.g. equation (2.6) in Salmon 1988a
and equation (104) in Morrison 1998) by an aspect-ratio trunction of the vertical
contribution (∂ξ3/∂τ)

2 to the kinetic energy.
Variation of (2.1) with respect to δξh, with endpoint conditions δξi(a, τ0) =

δξi(a, τ1) = 0 (i = 1, 2, 3), thermodynamic relations (2.3) and (2.4), initial condi-
tions ξ(a, 0) ≡ a, and suitable boundary conditions yields the hydrostatic equations
of motion in the form

ρ0(a)

[
∂2ξh

∂τ2
+

(
∂Rh

∂ξj
− ∂Rj

∂ξh

)
∂ξj

∂τ

]
= −Ahj ∂p

∂aj
, (2.5)

0 = −A3j

∂p

∂aj
− g ρ0(a), (2.6)

where

Apj = 1
2
εpqr εjkl

∂ξq

∂ak

∂ξr

∂al
(2.7)

with permutation symbol εpqr and p, q, r = 1, 2, 3 (h = 1, 2). Equation (2.6) is the
hydrostatic balance condition (1.2) in Lagrangian form. The system (2.5)–(2.6) along
with thermodynamic relations is closed under suitable initial and boundary conditions
because the positions ξ3(a, τ) may be obtained from the partial differential equation
(2.6): by differentiating (2.6) with respect to time τ and by using the boundary
conditions to eliminate the terms ∂ξ3/∂τ at the boundary the appropriate boundary
conditions for ξ3 can be found. Details on the variation of (2.1), or of similar
principles, can be found in Salmon (1988a), Morrison (1998) and Bokhove (1999).

The Lagrangian Hamilton’s principle (2.1) for hydrostatic balanced flows may be
transformed into an isentropic Eulerian Hamilton’s principle by a coordinate change
from label coordinates a, b, c = s and time τ to isentropic Eulerian coordinates x, y,
entropy s and time t ≡ τ and a transformation from Lagrangian variables x(a, s, τ) to
Eulerian variables a(x, s, t) = (a(x, s, t), b(x, s, t))T . Consider the product of Jacobians
∂(x, y, t, s)/∂(a, b, τ, s) and ∂(a, b, τ, s)/∂(x, y, t, s), i.e. xa xb xτ xs

ya yb yτ ys
0 0 1 0
0 0 0 1


 ax ay at as

bx by bt bs
0 0 1 0
0 0 0 1

 =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (2.8)

where subscripts denote partial derivatives. From (2.8) one deduces that

v ≡ ∂x

∂τ
= −Γ−1 ∂a

∂t
⇐⇒ ∂ai

∂t
+ uk

∂ai

∂xk
= 0, (2.9)

which amounts physically to advection of fluid parcel labelled a by horizontal fluid
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s0

s1

Ds

Dz
z = 0

x⊥

Figure 1. Sketch of the relation between geopotential φ ≡ g z and entropy s variations at the
Earth’s surface z = 0. s0,1 with s0 < s1 are two values of an isentropic surface. The horizontal
component normal to entropy contours at the lower boundary is considered. The resulting relations
for other geometries follow likewise.

velocity v ≡ (u, v)T on isentropic surfaces labelled by coordinate s. The tensor Γ is
defined by Γ i

k = ∂ai/∂xk . All indices range from i = 1, 2 and care is taken in their
placement. Hence, one finds

0 = δSc[a] = δ

∫ t1

t0

dtLc = δ

∫ t1

t0

dt

∫
DH

dx

∫ ∞
sB (x,t)

ds σ(x, s, t)

×{( 1
2
uh(x, s, t) + Rh(x)

)
uh(x, s, t)−U(s, ρ(x, s, t)

)− g z(x, s, t)} (2.10)

as the Eulerian Hamilton’s principle, in which velocity uh is the shorthand defined in
(2.9), and in which pseudodensity

σ(x, s, t) ≡ σ0(a, s) J(a, b) = −1

g

∂p(x, s, t)

∂s
= ρ(x, s, t)

∂z(x, s, t)

∂s
(2.11)

with the horizontal Jacobian J(a, b) ≡ ∂xa ∂yb − ∂xb ∂ya appears, where uh = δhj u
j

(∂hj is the Kronecker-delta symbol), and in which variations are taken with respect
to fluid parcel variables a. Lc is a Lagrangian functional for hydrostatic flow. The
domain is for example a horizontally infinite, closed or periodic domain, above a
mountain range hB , i.e. z > hB(x). In isentropic coordinates we have s > sB(x, t) and
the maximum horizontal extent of the domain is DH .

In the evaluation of (2.10) the following expressions, or variations or time-
derivatives thereof, are useful:

(Γ−1)
i

k Γ
k
j = δij , (2.12)

∂
(
σ(Γ−1)

m

k

)
∂t

+
∂
(
σuj (Γ−1)

m

k

)
∂xj

= σ (Γ−1)
n

k

∂um

∂xn
, (2.13)

−
∫
DH

dx

∫ ∞
sB

ds σ δ
(
U + g z

)
= −

∫
DH

dx

∫ ∞
sB

ds
p

ρ
δσ +

∫
DH

dx

(
σ
p

ρ

) ∣∣∣∣
sB

δsB. (2.14)

Subscripts B imply evaluation at the boundary B at z = hB(x).
The continuity equation expressed in terms of the pseudodensity appears directly

from definitions (2.9) and (2.11)

∂σ

∂t
=
∂σ0

∂ak
∂ak

∂t
J(a, b) + σ0 ε

ij εmn

(
∂2am

∂xi∂t

)
∂an

∂xj
= −uj ∂σ

∂xj
− σ ∂u

j

∂xj
. (2.15)
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The variation of (2.10) with respect to δak and (δak)B yields

0 = δSc[a] =

∫ t1

t0

dt

∫
DH

dx

∫ ∞
sB

ds σ
(
Γ−1

)n
k

{
∂un

∂t
+ uj

∂un

∂xj
+ uj

∂Rn

∂xj
− uj ∂Rj

∂xn

+
∂M

∂xn

}
δak +

∫ t1

t0

dt

∫
DH

dx

{((
Γ−1

)n
k

∂sB

∂xn

(
δak
)
B
− δsB

)
BM σ

−p
(

(δ z)B +
∂z

∂s
δsB

)
− σ(Γ−1

)n
k

(un + Rn)

(
∂sB

∂t
+ uj

∂sB

∂xj

)(
δak
)
B

}∣∣∣∣
sB

, (2.16)

where a function

BM ≡ ( 1
2
uh + Rh) u

h −M (2.17)

has been defined with Montgomery potential

M ≡ E + g z (2.18)

and enthalpy E ≡ U+p/ρ. The first two boundary terms in (2.16) cancel one another
with the help of the following relations:

δsB =
∂sB

∂
(
amB
) δ(amB) and δ

(
amB
)
=
(
δ am

)
B

+

(
∂am

∂s

)
B

δsB, (2.19)

in which the variation of amB ≡ am
(
xh, s = sB(x, t), t

)
is not equal to the boundary

value of the variation of am(x, s, t). The third and fourth boundary terms vanish when
we use the relation

0 = δ (z
∣∣
z=hB

) =
∂z(x, s, t)

∂s

∣∣∣∣
zB

δsB + (δz(x, s, t))

∣∣∣∣
sB

; (2.20)

the first equality in (2.20) emerges since z(x, sB(x, t)) = hB(x) and hence

δ z(x, sB(x, t)) = δ hB(x) = 0

and the second one in (2.20) follows geometrically from figure 1.
The equations of motion which arise from these variations are thus horizontal

advection of the boundary entropy at z = hB(x)(
δak
)
B

:
∂sB

∂t
+ uk

∂sB

∂xk
= 0 (2.21)

and the horizontal momentum equations(
δak
)

:
∂um

∂t
+ uk

∂um

∂xk
+ uk

(
∂Rm

∂xk
− ∂Rk

∂xm

)
+
∂M

∂xm
= 0. (2.22)

Since um is defined by (2.9) the momentum equations are second-order partial dif-
ferential equations in time for the fluid labels. It may come as a surprise that the
advection of boundary entropy does not involve the mountain hB . However, at the
boundary one finds in isentropic coordinates that

D(z − hB)

Dt
= −

(
∂z

∂s

)∣∣∣∣
sB

DsB
Dt

∣∣∣∣
sB

+(v · ∇|s z(x, y, s))sB − (v · ∇|s hB(x))sB = 0

=⇒ DsB
Dt

∣∣∣∣
sB

= 0, (2.23)
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while in Cartesian coordinates one finds that(
∂s(x, z, t)

∂t
+ (v · ∇) s(x, z, t) + (v · ∇)hB(x)

∂s(x, z, t)

∂z

)
z=hB

= 0. (2.24)

Equations of motion (2.21) and (2.22) need to be complemented with the first law of
thermodynamics (2.3) and the definition of the pseudodensity (2.11). The latter two
with (2.18) imply that

T =
∂M

∂s
. (2.25)

With the ideal gas law p = ρR T , in which R = cp − cv is the gas constant and cv the
specific heat at constant volume, equations (2.3), (2.11) and (2.25) can be reduced to
the elliptic equation

σ = −p00

g

∂

∂s

[(
1

T00

∂M

∂s

)cp/R
e−(s−s00)/R

]
(2.26)

with reference temperature T00, reference pressure p00 and reference entropy s00. The
lower boundary condition at s = sB(x, t) is

M = cp
∂M

∂s
+ g hB(x) (2.27)

and the upper one at z, s→∞ is

p ≡ p00

(
Ms/T00

)cp/R
e−(s−s00)/R → 0. (2.28)

Alternatively, an upper stratospheric boundary condition of prescribed pressure at
s = sU(x, t) may be specified as

p ≡ p00

(
Ms/T00

)cp/R
e−(s−s00)/R ≡ pU(x). (2.29)

With the ideal gas law (2.18) becomes M = cp T + g z.

2.2. Eulerian action principle

The generalized interior momentum corresponding to (2.1) is (e.g. Morrison 1998 and
Bokhove 1999)

π∗k (x, t) = δL[a]/δ

(
∂ak

∂t

)
= σ (Γ−1)

m

k

(
δmn (Γ−1)

n

j

∂aj

∂t
− Rm

)
= −σ (Γ−1)

m

k (um + Rm). (2.30)

An Eulerian action principle follows after a Legendre transform and may be rewritten
in terms of π∗ and a or in terms of v and a. One finds either

0 = δ

∫ t1

t0

dtLc = δ

∫ t1

t0

dt

{∫
DH

dx

∫ ∞
sB

ds π∗k
∂ak

∂t
−H[π∗i , a

i]

}
(2.31)

or

0 = δ

∫ t1

t0

dt

{∫
DH

dx

∫ ∞
sB

ds

[
−σ (um + Rm

) (
Γ−1

)m
k

∂ak

∂t

]
−H[ui, a

i]

}
(2.32)

with the Hamiltonian as Legendre transform

H[π∗i , a
i] =H[ui, a

i] =

∫
DH

dx

∫ ∞
sB

ds σ
{

1
2
ui u

i +U(s, ρ) + g z
}
. (2.33)
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Independent variations in (2.31) or (2.32) are taken with respect to π∗, a or v, a,
respectively. Similar calculations to those for variations of Hamilton’s principle (2.1)
yield the horizontal momentum equations (2.22) on isentropic surfaces for variations
δa, (2.9) for variations δv, and again[

σ (Γ−1)
n

k (un + Rn)

(
∂sB

∂t
+ v · ∇sB

)] ∣∣∣∣
s=sB

= 0 (2.34)

for (δak)B . The momentum corresponding to ∂akB/∂t is zero which signals that the
Lagrangian (2.1) is singular but only at the boundary. Dirac’s theory for singular
Lagrangians (Dirac 1964) may be applied but I am not pursuing this route.

2.3. Hamiltonian formulation

A Hamiltonian formulation of the hydrostatic primitive equations in isentropic co-
ordinates, in terms of label variables a and velocity v, may be derived directly from
action principle (2.32) (Sudarshan & Mukunda 1974, p. 132 ff. and p. 422 ff.) – for
the moment ignoring boundary contributions by taking sB constant. Subsequently,
a reduced Hamiltonian formulation can, in principle, be found either from the La-
grangian or Eulerian Hamiltonian fluid-parcel formulations as a corollary of the
reduction theory developed by Marsden & Weinstein (1983) (see also Mazer & Ratiu
1989 and Morrison 1998).

2.4. Noether’s theorem and Casimir invariants

Noether’s (1918) first theorem may be applied for point transformations which leave
the Lagrangian density in the action (2.10) invariant. Since this action is expressed in
isentropic Eulerian coordinates, the rôle of independent and dependent variables has
changed relative to the same action Sc expressed in the Lagrangian fluid parcel co-
ordinates. Following notation of Padheye & Morrison (1996) who consider Noether’s
theorem for a Lagrangian Hamilton’s principle for non-hydrostatic, compressible
flows, we find

Sk δa
k + ∂iδΥ

i = 0 (2.35)

where k = 1, 2; x ≡ (t, x, y, s)T , a = (a1, a2)T ; ∂o = ∂/∂t; ∇ = (∂x, ∂y)
T ; ∂3 = ∂s =

∂/∂s; and

Sk ≡ δA

δak
=
∂L

∂ak
− ∂j ∂L

∂(∂j ak)
, δΥ i ≡ Lδx i +

∂L

∂(∂iak)
δak + Λi,

δak = ∆ak(x , a)− ∂jak δx j

 (2.36)

with i, j = 0, 1, 2, 3. Noether’s first theorem now reads

∂j(δΥ
j) =

∂δΥ 0

∂t
+ ∇ · (δΥ ) +

∂δΥ s

∂s
= 0 (2.37)

with Υ s ≡ Υ l for l = 3. Understanding the origin of symmetries and associated
conservation laws from an Eulerian viewpoint is of interest in the search of both
symmetry-preserving approximations to Eulerian variational principles and symmetry-
preserving Eulerian discretizations. Direct application of Noether’s first theorem is
cumbersome due to the time-dependent domain in isentropic coordinates. The deriva-
tion of conservation laws directly from the variational principle for each separate
symmetry is more straightforward. Some detail of this derivation is provided to
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highlight subtleties associated with the time-dependent domain. Although Eulerian
variational principles in terms of fluid parcel variables are less well-known, they gen-
erally have the same validity as Lagrangian variational principles. Approximations
to Eulerian variational principles may nevertheless be more advantageous because
non-dimensionalization and scaling tend to be based on Eulerian estimates of the
characteristic scales involved – examples supporting this assertion are given in § 4.

First, let us consider the same particle relabelling transformation as in Lagrangian
coordinates (e.g. Salmon 1983, 1988a and Padheye & Morrisson 1996) but now
expressed in isentropic, Eulerian coordinates, i.e. consider point transformations of
the form

x̂ = x , â(x̂ , a) = a(x) + ∆a(x , a). (2.38)

Hence δa(x , a) ≡ â(x̂ , a) − a(x) = ∆a(x , a). We seek transformations (2.38) for which
the Euler–Lagrange equations remain invariant, i.e. Ŝc[â] = Sc[â]. Together with
covariance of the action Ŝc[â] = Sc[a], these transformations have to satisfy∫

D

dx

(
L(a, ∂a, x)− ∂(x̂)

∂(x)
L(â, ∂̂â, x̂)

)
= 0 (2.39)

with
∫

dx =
∫
DH

dx
∫
smin

ds in which smin is the minimum entropy value in the domain

and with determinant ∂(x̂)/∂(x). The Lagrangian density of the hydrostatic fluid is

L = Θ[s− sB] σ
{ (

1
2
um + Rm

)
um −U(s, ρ)− g z}, (2.40)

where um = δmju
j is the shorthand defined in (2.9), and Θ[·] is the Heaviside function,

i.e. Θ[φ] is zero for φ < 0, one for φ > 0 and half for φ = 0. After some manipulation
we find the following relations:

(Γ̂−1)
i

l = (Γ−1)
i

l − ∂ δan

∂xj
(Γ−1)

i

n (Γ−1)
j

l ,

ûm = um − (Γ−1)
m

j

∂ δaj

∂t
− uj (Γ−1)

m

n

∂ δan

∂xj
,

σ(x) Û(ŝ, ρ̂) + σ(x) g ẑ(x̂) = σ U(s, ρ) + σ g z(x) +
p

ρ
(σ̂ − σ)− ∂ [p (ẑ − z)]

∂s


(2.41)

(all indices are 1 or 2) which prove useful in evaluating (2.39). Using (2.40) and (2.41)
(2.39) becomes

0 =

∫ t1

t0

dt

∫
DH

dx

∫ ∞
smin

dsΘ[s− sB(x, t)]

{
−σ BM

[
∂ ln σ0

∂ak
δak + (Γ−1)

j

k

∂ δak

∂xj

]
+σ (um + Rm)

[
(Γ−1)

m

k

∂ δak

∂t
+ uj (Γ−1)

m

n

∂ δan

∂xj

]}
−
∫ t1

t0

dt

∫
DH

dx

∫ ∞
smin

ds δ(s− sB(x, t)) σ BM δsB(aB) (2.42)

with BM given by (2.17). Condition (2.42) implies that

∂ δai(x , a)|x,t
∂t

=
∂ δai(x , a)|x,t

∂xj
= 0,

∂ [ σ0(a) δa
j(a)]

∂aj
= 0, δalB(aB) = 0. (2.43)

The permitted point variations are thus

δaj = −ε
jm

σ0

∂Ψ (a)

∂am
(2.44)
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with arbitrary function Ψ (a) zero at boundaries. Rather than substituting (2.44) into
Noether’s first theorem, we proceed by analysing (2.42). Further analysis of (2.42)
gives the Euler–Lagrange equations for hydrostatic flow and flux terms. Instead of
using δak(x, t0,1) = 0 at the endpoints, we find that the relevant flux terms are

0 = δ

∫ t1

t0

dt

∫
DH

dx

∫ ∞
smin

ds

{
∂

∂t
[Θ[s− sB(x, t)] σ (um + Rm) (Γ−1)

m

k δa
k]

+
∂

∂xj
[Θ[s− sB(x, t)] σ (um + Rm) (Γ−1)

m

k δa
k]

}
(2.45)

while the other flux term cancels as before. Substitution of

δak = −ε
kl

σ0

(Γ−1)
n

l

∂Ψ

∂xn
(2.46)

into (2.45) gives

0 = δ

∫ t1

t0

dt

∫
DH

dx

∫ ∞
smin

dsΘ[s− sB(x, t)]

(
∂ (σ q)

∂t
+ ∇ · (σ q v)

)
Ψ (2.47)

(after several integrations by parts and after using boundary conditions) in which the
isentropic potential vorticity q (Hoskins 1991) is defined by

q =
f + ẑ · ∇× v

σ
. (2.48)

The arbitrariness of Ψ in (2.47) implies flux conservation:

∂ (σ q)

∂t
+ ∇ · (σ q v) = 0. (2.49)

Combining continuity equation (2.15) and (2.49) yields material conservation of
potential vorticity. It follows that besides σ q also σ C(q, s), with arbitrary function C ,
is conserved locally. Globally conserved, so-called Casimir, invariants then have the
form

C =

∫
DH

∫ ∞
sB

dx ds σ C(q, s), (2.50)

which can be proven directly from the equations of motion (see Appendix A).
Without loss of generality Casimir invariants may be split into general and circulation
components:

C =

∫
dx

∫ ∞
sB

ds σ
{
C(q, s)− λ(s) q } (2.51)

in which the last term may be transformed to yield the circulation at the boundaries.
Let us next consider point transformations of the form

t̂ = t+ δt(t, x), x̂ = x, ŝ = s, â = a, (2.52)

which have to obey (2.39) with L given in (2.40). Such transformations satisfy the
following relations:

∆

(
∂ai

∂xj

)
= −∂ δt

∂xj
∂ai

∂t
, ∆

(
∂ai

∂t

)
= −∂ δt

∂t

∂ai

∂t
,

∂(x̂)

∂(x)
=
∂ δt

∂t
. (2.53)
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For transformations (2.52) with (2.53), evaluation of (2.39) yields

0 =

∫ t1

t0

dt

∫
DH

dx

∫ ∞
smin

ds

{
−L ∂ δt

∂t
+Θ[s− sB]

(
BM σ0 εijεkl

∂ak

∂t

∂al

∂xj
∂ δt

∂xi

−σ (um + Rm)

[
ul (Γ−1)

m

j

∂ δt

∂xl
∂aj

∂t
+ (Γ−1)

m

i

∂ai

∂t

∂ δt

∂t

])}
. (2.54)

Hence δt = ε. First, further evaluation of (2.54) for arbitrary δt yields – cf. (2.35) –
the Euler–Lagrange equations and Noether’s theorem

0 =

∫ t1

t0

dt

∫
DH

dx

∫ ∞
smin

ds

{
∂

∂t

(
Θ[s− sB]E δt

)
+

∂

∂xi

[
Θ[s− sB] σ ui

(
1
2
um u

m +M
)
δt
]}

(2.55)

with energy density E ≡ σ [(1/2) um u
m +U + g z]. Substituting δt = ε then yields an

energy flux law. Alternatively, let δt = δt(t) be a function of t only, vanishing at the
time to that boundary. A similar calculation to that in Salmon (1983) gives global
energy conservation dH/dt = 0 with Hamiltonian

H =

∫
DH

∫ ∞
sB

dx ds σ
(

1
2

∣∣v∣∣2 +U + g z
)
. (2.56)

A direct verification of energy conservation from the equations of motion is given in
Appendix C.

3. Wave-activity invariant and linear stability criteria

A wave-activity conservation law will be derived for the hydrostatic equations
of motion by using the energy-Casimir method (e.g. Marsden & Ratiu 1994 and
Shepherd 1990). Wave activity is a nonlinearly conserved quantity expressed in terms
of disturbances to a basic state. It is second order for small-amplitude disturbances.
The conditions for sign definiteness of this small-amplitude wave activity imply
non-modal linear stability criteria. Haynes (1988) derived wave-activity conservation
relations directly from the hydrostatic equations of motion (in isentropic coordinates)
with forcing and dissipation but without inclusion of time-dependent boundaries.
In contrast, the energy-Casimir method is used here with explicit inclusion of time-
dependent boundaries but without forcing and dissipation.

From the equations of motion (2.15), (2.21), and (2.22) non-resting basic states

v = U (x), σ = Σ(x), B = B̄(x), M = M̄(x), q = Q̄(x), and sB = SB(x),

with Bernoulli function B ≡ (1/2) |v|2 +M, are solutions of the system

0 = U · ∇SB at s = SB(x),

0 = Q̄ Σ ẑ ×U + ∇( 1
2
|U |2 + M̄),

0 = ∇ · (ΣU )

 (3.1)

and its accompanying diagnostic relations. After introducing a transport streamfunc-
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tion ẑ × ∇Ψ = ΣU it follows that

Q̄∇Ψ = ∇ B̄ (3.2)

and that B̄, Q̄, SB are constant along streamlines, i.e. are functions of Ψ .
The Casimir function C(q, s) and parameter λ(s) in (2.51) may be determined such

that the first variation of pseudoenergy A =H[u] +C[u]−H[U]−C[U] with state
variable u = {v, σ, sB} and its basic state U = {U , Σ, SB}, i.e.

δA =

∫
DH

∫ ∞
sB

dx ds {(B + C − q Cq) δ σ + (∇Cq × ẑ + σ v) · δ v}

−
∫
DH

dx {σ (B̄ + C − λ q) δ sB + (Cq − λ) δv × ẑ · ∇ sB}|s=sB

+

∫
∂DH

dl n ·
∫ ∞
sB

ds (Cq − λ) δv × ẑ, (3.3)

vanishes at the basic state. (Variations of Casimir and energy invariants are found in
Appendix B.) Hence one finds that

B̄(Ψ ) = −C(Q̄, s) + Q̄ CQ̄(Q̄, s),

∇CQ̄(Q̄, s)× ẑ = −ΣU = ∇Ψ × ẑ,
λ(s)|(s=SB ,∂DH ) = CQ̄(Q̄, s)|(s=SB ,∂DH ).

 (3.4)

Requirement (3.4) may be satisfied at s = sB since contours of entropy and potential
vorticity coincide there for the basic-state flow, and at ∂DH because no normal flow im-
plies that the basic-state streamfunction there is a function of s only. Alternatively, in
a semi-infinite domain potential vorticity may become a function of s only as |x| → ∞.

Defining disturbance quantities in the usual way like σ = Σ + σ′, p = Π + p′, T =
T̄ + T ′, etc. one derives the following pseudoenergy:

A =

∫
DH

∫ ∞
SB

dx ds

{
(Σ + σ′)

∫ q′

0

dγ
[
Cγ(Q̄+ γ, s)− CQ̄(Q̄)

]
+ 1

2
(Σ + σ′) |v′|2 + σ′U · v′

}
+

∫
DH

∫ ∞
SB+s′B

dx ds (Σ + σ′)E(Σ + σ′)

−
∫
DH

∫ ∞
SB

dx ds
{
Σ E(Σ, s) + M̄ σ′

}
+

∫
DH

dx
{

(p z)
∣∣
SB+s′B
−ΠB ZB + ΣB g ZB s

′
B

}
−
∫
DH

∫ SB+s′B

SB

dx ds
{

1
2
Σ |U |2 + ΣB g ZB + Σ C(Q̄, s)− λ(s) Q̄ Σ}

−
∫ ∫ SB+s′B

SB

dx ds
{

(Σ + σ′)
[
U · v′ + 1

2
|v′|2 + Σ C(Q+ q′, s)− λ(s) q′]

+ 1
2
σ′ |U |2 − Σ C(Q̄, s)− λ(s) Q̄ σ′}, (3.5)

in which the subscript in ΠB denotes evaluation of Π at the steady-state boundary
s = SB and so forth except in s′B . By construction, we have dA/dt = 0. For simplicity
we first consider only the small-amplitude limit A2 of (3.5) for which the boundary
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coincides with an isentrope s0. The result is a quantity of second order in the
disturbance amplitude

A2 =

∫
DH

∫ ∞
s0

dx ds

{
1

2 (Σ + σ′)

∣∣∣∣(Σ + σ′) v′ +U σ′
∣∣∣∣2

−1

2

|U |2
(Σ + σ′)

σ′2 +
1

Σ

∂Z

∂s
p′ σ′ +

1

2

(
R

cp
− 1

)
1

Π

∂Z

∂s
p′2 + 1

2
C ′′(Q̄) q′2

}
(3.6)

(use has been made of the ideal gas law). The appearance of terms proportional to
σ′ p′ and p′2 in (3.6) prevents the derivation of linear or formal stability criteria for
general moving basic-states. Holm & Long (1989) derived formal stability criteria
for hydrostatic, incompressible Boussinesq flows expressed in isopycnal coordinates
by introducing an effective local wavenumber, which in the isentropic coordinates
used here would amount to σ′/p′, but their criteria are conditional in that they are
dependent on the nature of the perturbations rather than only on the nature of the
steady state.

For a resting basic state

C(s) = −M̄(s) = −
∫ s

sB

dγ

(
Π(γ)

p00

)cp/R
e−(γ−s00)/cp , (3.7)

cf. expression (8.9) in Shepherd (1993). The small-amplitude limit of (3.5) for a resting
basic state is a second-order quantity AR of the form

AR =
1

2

∫
DH

dx

∫ ∞
s0

ds

{
Σ |v|2 +

1

g cpρ̄
p′2
}

+
1

2

∫
DH

dx g

{
Σ
∂Z

∂s

[
s′B − p′

g Σ

]2}∣∣∣∣
SB

. (3.8)

This expression may also be derived directly from the equations of motion linearized
around a resting basic state – see Appendix D – except that the boundary contribution
is then absent. No contradiction ensues because the time derivatives of the integrands
in the boundary integral are zero:[

∂sB

∂t
− 1

g Σ

∂p′

∂t

]∣∣∣∣
SB

=

[
∂sB

∂t
+

(
∂Z

∂s

)−1
∂z′

∂t

]∣∣∣∣
SB

= 0. (3.9)

Linear stability criteria for a resting basic state follow from (3.8) as

1

g cp

1

ρ̄
> 0, Σ = ρ̄

g

cp
N−2 > 0,

(
Σ
∂Z

∂s

)∣∣∣∣
SB

> 0. (3.10)

The first condition in (3.10) ensures the natural positive basic-state density and the
second one then ensures static stability.

4. Discussion of conservative approximations
When one considers the hydrostatic equations after they are linearized around a

state of rest, then one finds in mid-latitudes and away from lateral boundaries that
all gravity modes have frequencies larger than f . (This follows for example readily
for an isothermal basic state in a domain that is bounded by two vertical planes and
that is horizontally periodic with constant f .)
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The time-scale separation between linear gravity and vortical modes in mid-latitudes
suggests that approximate models which only describe the large-scale vortical motion
may be valid even in the nonlinear limit. This is the case as long as the generation of
gravity-wave motion by vortical motion remains weak.

When the aim is to model such large-scale rapidly-rotating geophysical flows, one
advantage of a variational or Hamiltonian formulation is that we may approximate
these formulations such as to preserve analogues of symmetries in the original equa-
tions of motion. Analogues of conservation laws in the original parent dynamics can
then be preserved in situations where we desire that the approximate dynamics is
conservative in an appropriate inviscid limit. The subsequent outline will show how
approximations can be made to the hydrostatic isentropic variational formulation
derived in this paper. Gravity modes in these so-called ‘balanced models’ are filtered.
They disappear in these approximations because the time order of the system has
been reduced in a perturbation or truncation approach, which is called singular in
the sense used in perturbation methods (e.g. Bender & Orszag 1978).

In the geophysical fluid dynamics literature, variational principles for shallow-
water and stratified Boussinesq equations have been used as starting point or as
parent dynamics for deriving approximate balanced models (Salmon 1983, 1985,
1988b; Allen & Holm 1996; Holm 1996; McIntyre & Roulstone 1996). Several
important points arise. First, Eulerian variational principles such as (2.32) may be
scaled using Eulerian estimates of time, length and velocity scales, as opposed to
scaling a Lagrangian variational principle. Secondly, direct substitution of velocity
constraints v ≡ vC[σ, sB] into (2.32) expressed in terms of the pseudodensity σ and
sB , either obtained by asymptotic means or physical intuition, yields a Hamilton’s
principle in which variations are taken with respect to fluid label variables a only.
The variations now yield two first-order partial differential equations in time, one
for each ak , as opposed to the two second-order partial differential equations in
time arising in the original hydrostatic parent dynamics. This again underscores the
reduction of order in time. The direct substitution approach carries over directly
from the shallow-water realm for the interior dynamics since the hydrostatic system
has, on each isentropic surface, a structure quite similar to that of the shallow-water
system. That is, if we replace Montgomery potential M by shallow-water depth h and
pseudodensity σ by h as well, then the shallow-water equations emerge from (2.15)
and (2.22). Similarly, the shallow-water Eulerian Hamilton’s or action principle lacks
reference (and integration over) entropy s, and its potential energy (1/2) h2 replaces
the hydrostatic internal and potential energy. Thirdly, the velocity v resulting from
the direct substitution approach differs from the constraint velocity vC[σ, sB] and is

the ‘particle’ velocity (McIntyre & Roulstone 1996) um = uPm ≡ −δmj (Γ
−1)

j

k ∂a
k/∂t

that advects the fluid particles. (McIntyre & Roulstone 1996 refer to the appearance
of a particle velocity and constrained velocity as ‘velocity splitting’.) Under certain
restrictions there exists a unique solution of an elliptic set of equations for vP . Finally,
the boundary dynamics in these approximate or balanced models are similar to
those in the full hydrostatic system; the particle velocity at the boundary advects the
boundary entropy.

Let us introduce the anisotropic scaling often used in large-scale geophysical fluid
dynamics on frontal (6 100 km) and synoptic scales (O(1000 km))

x = l x′, y = Ly′, z = D z′, u = U u′, v = V v′,

a = A a′, b = B b′, t = (l/U) t′, M = µM ′, f = f0 f ′, s = s00 s
′,

}
(4.1)
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with (l/U) = (L/V ). We take µ = f0 U l to enforce geostrophic balance, that is

f ẑ × v = −∇M, (4.2)

at leading order in at least the along-frontal y-direction. Analysing the magnitude

of the terms (Γ−1)
j

k ∂a
k/∂t in (2.32) reveals that they scale as the velocity; hence

the reference to label scales A and B does not appear explicitly. After dropping the
primes, a scaled version of (2.32) is

0 = δ

∫ t1

t0

dt

∫
DH

dx

∫ ∞
sB

ds

{
−σ (Ro δ2 u1 +R1

) (
Γ−1

)1

k

∂ak

∂t
− σ (Ro u2 + R2

) (
Γ−1

)2

k

∂ak

∂t

−σ
(

1
2
Ro δ2 u2 + 1

2
Ro v2 +

U(ρ, s)

f0 U L
+

g D

f0 U L
z

)}
(4.3)

with the following dimensionless parameters: the anisotropic Rossby number Ro ≡
v/(f0 l) and frontal parameter δ ≡ l/L = U/V . Proper scaling of the internal energy
and potential energy requires the introduction of a basic state, e.g. the basic state used
in § 3 which depends on entropy only. If we take δ = 1 then the quasi-geostrophic
system (e.g. Pedlosky 1987) arises at leading order in a Rossby-number expansion and
this quasi-geostrophic dynamics is expected to be valid only in the neighbourhood of
the basic state around which the expansion is ordered. This restriction can be lifted
in a rather ad hoc manner by assuming that the magnitude of the total internal and
potential energy is of order unity. Consequently, a division between basic state and
remainder is absent. Scaling is thus only used to compare relative magnitudes of the
kinetic and Coriolis terms in the variational principle.

The scaled action principle (4.3) covers various small-parameter limits. Several
leading- and higher-order balanced models arise in these limits:

(i) For δ = 0 and Ro = O(1) an isentropic version of Hoskins & Bretherton’s
(1972) geostrophic momentum model appears.

(ii) For δ = O(1) and Ro = 0 geostrophic balance (4.2) appears.
(iii) Substituting geostrophic velocity vG ≡ (1/f ) ẑ × ∇M as constraint velocity

vC = vG back into (4.3) yields an isentropic version – instead of a shallow-water
version – of Salmon’s L1-dynamics (Salmon 1985). In shallow-water L1-dynamics the
particle velocity is a unique solution of a system of elliptic equations provided that
potential vorticity q is positive and the domain bounded (Ren & Shepherd 1997).
This result carries over to hydrostatic L1-dynamics, at least for constant sB and in a
domain bounded in the horizontal, provided that potential vorticity q > 0 on each
isentropic surface.

(iv) Higher-order ageostrophic balanced models may now in principle be derived
by substituting the L1-dynamics particle velocity constraint back into (4.3), and so
forth. Although this can be made plausible by performing the variations in (4.3) for
arbitrary constraint velocity, the well-posedness of the resulting systems needs further
investigation.

The above program (i)–(iv) concerns research quite similar to previous research done
in the similar shallow-water system, but would extend it by including stratification
and boundary intersecting isentropes. Finding an Eulerian variational or Hamiltonian
formulation of the hydrostatic equations originated in the quest for such a formulation
for (an isentropic version of) the Hoskins & Bretherton geostrophic momentum
equations. Here, I will only derive an isentropic version of their model from the
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Eulerian variational principle in detail. For δ = 0 the dimensional form of (4.3)
becomes

0 = δ

∫ t1

t0

dt

∫
DH

dx

∫ ∞
sB

ds

{
−σ R1

(
Γ−1

)1

k

∂ak

∂t

−σ (u2 + R2

) (
Γ−1

)2

k

∂ak

∂t
− σ ( 1

2
v2 +U(ρ, s) + g z

)}
. (4.4)

Variations in δa and δb yield geostrophic balance along the front and the cross-frontal
momentum equation

f v =
∂M

∂x
, (4.5)

∂v

∂t
+ v · ∇v + f u = −∂M

∂y
, (4.6)

respectively, and the variation in δv yields

(Γ−1)
2

k

∂ak

∂t
+ v = 0 (4.7)

with v = (u, v)T ≡ vP and uC = 0. The zonal velocity u is understood to be a shorthand
for

−(Γ−1)
1

k

∂ak

∂t
(4.8)

as it was in the Eulerian Hamilton’s principle (2.10). The meridional velocity v is not
constrained a priori in the variational principle but is geostrophically balanced by
(4.5). The full continuity equation ∂σ/∂t+∇·(σ v) = 0 is retained from the definition of
σ in (2.11) and the definition of particle velocity in (4.7) and (4.8). By using Noether’s
theorem, as in § 2.4, we again find potential vorticity and energy conservation but
now with potential vorticity

qHB ≡ vx + f

σ
, (4.9)

and with Hamiltonian

HHB ≡
∫
DH

∫ ∞
sB

dx ds σ
{

1
2
v2 +U(s, ρ) + g z

}
. (4.10)

These simplifications directly follow from a substitution u = uC = 0 into the parent
action principle (4.3).
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Appendix A. Casimir invariants
The invariance of Casimir (2.50), i.e.

C =

∫
DH

∫ ∞
sB

dx ds σ C(q, s), (A 1)
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may be shown directly from the equations of motion. That is

dC
dt

=

∫
dx

∫ ∞
sB

ds

(
∂σ

∂t
C + σ Cq

∂q

∂t

)
−
∫

dx (σ C)|sB ∂sB∂t
= −

∫
dx

∫ ∞
sB

ds∇ · (σ vC) +

∫
dx (σ C v)|sB · ∇sB

= −
∫

dx∇ ·
∫ ∞
sB

ds σ vC

= −
∫
∂DH

dl n ·
∫ ∞
sB

ds
(
σ vC

)
sB

= 0, (A 2)

where dl is an infinitesimal line element at the extreme horizontal limits ∂DH with
Cq ≡ ∂C/∂q. The last boundary contribution is seen to cancel when there are walls,
either because at vertical boundaries n̂ · v = 0 or because the integral over s has
identical limits when there are non-vertical boundaries, or for vanishing or cancelling
flows at infinity.

Appendix B. Variations of Casimir and energy invariants
Variations of Casimir and energy invariants are used in § 3. Variation of Casimir

invariant (2.51) gives

δC =

∫
dx

∫ ∞
sB

ds
{(
C − q Cq) δσ + ∇Cq × ẑ · δv}

+

∫
∂DH

dl

∫ ∞
sB

ds n̂ · (Cq − λ) δv × ẑ
+

∫
dx
{ (
Cq − λ) δv × ẑ · ∇sB − σ (C − λ q ) δsB} ∣∣s=sB . (B 1)

Variation of the Hamiltonian invariant gives

H =

∫
DH

∫ ∞
sB

dx ds
{(

1
2
|v|2 +M

)
δσ + σ v · δv

}
−
∫
DH

∫ ∞
sB

dx ds σ
(

1
2

∣∣v∣∣2 +M
) ∣∣

s=sB
δsB. (B 2)

Appendix C. Direct calculation of energy conservation
In this Appendix energy conservation will be derived directly from the equations

of motion

∂v

∂t
+ v · ∇v + f ẑ × v = −∇M,

∂σ

∂t
+ ∇ · (σ v) = 0 (C 1a,b)

with

σ = −p00

g

∂

∂s

[(
1

T00

∂M

∂s

)cp/R
e−(s−s00)/R

]
, (C 2)

the first law of thermodynamics (2.3) and definitions

M = E + g z, E = U + p/ρ, g σ = ρ
∂(g z)

∂s
= −∂p

∂s
. (C 3)
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Multiplication of (C 1a) by σv, (C 1b) by (1/2) |v|2, (C 1b) by M, and summation
gives

∂

∂t

(
1
2
σ |v|2)+ ∇ · [σ v ( 1

2
|v|2 +M

)]
+M

∂σ

∂t
= 0. (C 4)

With definitions (C 3) and the first law of thermodynamics, the last term in (C 4)
decomposes into

M
∂σ

∂t
=
∂[σ (U + g z)]

∂t
+
∂

∂s

(
p
∂z

∂t

)
. (C 5)

By combining (C 4) and (C 5), integrating the result over the domain (e.g. take
s = sB(x, t), . . . ,∞), applying suitable boundary conditions for inviscid flow, and using
∂sB/∂t+ v · ∇sB = 0 at the lower boundary z = hB or s = sB , we find

∂

∂t

∫
DH

dx

∫ ∞
sB

ds σ
(

1
2
|v|2 + (U + g z)

)− ∫
DH

dx

(
p
∂z

∂t
+ p

∂z

∂s

∂sB

∂t

)∣∣∣∣
sB

. (C 6)

These last two boundary terms cancel one another and hence energy conservation is
established by direct calculation.

Appendix D. Linear stability
In this Appendix linear stability criteria will be derived from the equations of

motion linearized around a resting basic state with pseudodensity

Σ(s) = −p00

g

∂

∂s

[(
1

T00

∂M̄

∂s

)cp/R
e−(s−s00)/R

]
, (D 1)

density

ρ̄ =
p00

T00 R

(
1

T00

∂M̄

∂s

)(cp/R)−1

e−(s−s00)/R, (D 2)

and Montgomery potential M̄(s). Introducing perturbation variables in the usual way,
M = M̄ + m, σ = Σ + σ′, sB = SB + s′B , etc. the linearized equations read

∂v

∂t
+ f ẑ × v = −∇m, ∂σ′

∂t
+ Σ(s)∇ · v = 0 (D 3a,b)

with

σ′ = − cp p00

g T00 R

∂

∂s

[(
1

T00

∂M̄

∂s

)(cp/R−1)
∂m

∂s
e−(s−s00)/R

]
, (D 4)

using the first law of thermodynamics and definitions (C 3).
Multiplication of (D 3a) by Σ v, (D 3b) by m, and addition gives

∂

∂t

(
1
2
Σ |v|2)+ ∇ · (Σ m v) + m

∂σ′

∂t
= 0. (D 5)

Using (D 2), (D 4) and p′ = cp ρ̄ ∂m/∂s the last term integrated over entropy s (e.g.
from s = SB, . . . ,∞) gives∫

SB

ds m
∂σ′

∂t
=
m

g

∂p′

∂t

∣∣∣∣
s=SB

+

∫
SB

ds
1

g cP ρ̄

∂

∂t

(
1
2
p′2
)
. (D 6)
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Integration of (D 5) over the domain, using result (D 6), careful integration by parts
and application of suitable boundary conditions for inviscid flows, eventually gives

∂

∂t

∫
DH

dx

∫ ∞
SB

ds 1
2

(
Σ|v|2 +

1

g cP ρ̄
p′2
)

+

∫
DH

dxm

(
1

g

∂p′

∂t
− Σ ∂sB

∂t

)∣∣∣∣
s=SB

= 0. (D 7)

The last two terms cancel one another after using the linearized hydrostatic equation
and the linearized (2.20). Hence, linear stability criteria (3.10) have also been derived
by direct manipulation of the linearized equations of motion.
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